EXHIBIT 25

EXHIBIT 25

UNITED STATES PATENT NO. 10,200,228

MediaTek hereby identifies evidence demonstrating the infringement of following NXP products: 88W9064, 88W9068, 88W9000S, 88Q9098, 88W9098, IW620, CW641, WLAN8101C, and WLAN8101H (collectively, the "Accused '228 Products"). These products are made by NXP, and are imported, sold for importation, and/or sold within the United States after importation by NXP, Avnet, Arrow, and Mouser. The chart below is based on evidence of representative products of the Accused '228 Products.

'228 Patent Claim	Representative NXP Product(s)
11[pre]. A wireless station, comprising:	To the extent the preamble is limiting, the Accused '228 Products include "[a] wireless station." <i>See, e.g.</i> :

'228 Patent Claim	Representative NXP Product(s)						
	88W9064: 2.4 Solution	/5 GHz Dual-Band	l 4x4 Wi-Fi®	[®] 6 (802.	11ax) Access		
	OVERVIEW	DOCUMENTATION	TOOLS & SOFTWARE		TRAINING & SUPPORT		
	Jump To Overview & Features Target Applications	Overview The 88W9064 is part of the nex- industry-leading Wi-Fi 6 access enabled award-winning platforr provides a complete 802.11ax the strength of our proven impl beamforming technologies, our OFDMA solutions help increase downlink traffic but also for upli overall improved network utiliza growing demands of user appli	tt evolution of our s solutions that have ns. This device family feature set. Drawing on icit and explicit full MU-MIMO and e capacity not only for nk traffic. This allows for ation while meeting the cations.	Feature Wi-Fi 6 Ki-Fi 6 Flex MAC Bluetooth Bluetooth Precision Host Inte	PS		

'228 Patent Claim	Rep	presentative NXP Product(s)
	NXP [®] 88W9064 4x4 with Bluetooth [®] 5 So	Wi-Fi® 6 Dual Band oC
	The NXP 88W9064 SoC family of Wi-Fi access so and draws on the strength of our beamforming t solutions help increase capacity for downlink and utilization while meeting the growing demands o	Iutions provides an advanced 802.11ax feature set echnologies. Integrated MU-MIMO and OFDMA I uplink traffic to allow for overall improved network of user applications.standard compliance.
	 PRODUCT OVERVIEW The NXP 88W9064 SoC family of Wi-Fi access solutions provides an advanced 802.11ax feature set and draws on the strength of our beamforming technologies. Integrated MU-MIMO and OFDMA solutions help increase capacity for downlink and uplink traffic to allow for overall improved network utilization while meeting the growing demands of user applications. Other features of the 88W9064 family include integrated Bluetooth 5 and precision device location function that provides accurate positioning within 1 meter and 10 degrees. Bluetooth 5 supports classic Bluetooth and Bluetooth Low Energy with features such as long-range and direction finding using angle of arrival (AoA) and angle of departure (AoD). The added Bluetooth capability can be leveraged to provide a more cost-effective and complete solution for users' connectivity needs. 	 TARGET APPLICATIONS 88W9064 SoC Enterprise & retail access points Broadband gateway Fixed wireless 88W9064S SoC Service provider set-top box Over-the-top set-top box
	https://www.nxp.com/docs/en/fact-sheet	t/88W9064-FACT-SHEET.pdf

'228 Patent Claim	Representative NXP Product(s)
	27.3 HE PHY
	27.3.1 Introduction
	This subclause provides the procedure by which PSDUs are converted to and from transmissions on the wireless medium.
	During transmission, a PSDU (in the SU case) or one or more PSDUs (in the MU case) are processed (i.e., scrambled and coded) and appended to the PHY preamble to create the PPDU. At the receiver, the PHY pre- amble is processed to aid in the detection, demodulation, and delivery of the PSDU.
	IEEE P802.11ax/D6.0, November 2019, at 504.
	27.3.5 Transmitter block diagram
	Figure 27-17 (Transmitter block diagram for the UL transmission or DL non-MU-MIMO transmission of a Data field with BCC encoding on a 26-, 52-, 106- or 242-tone RU) shows the transmitter blocks for the UL transmission or DL non-MU-MIMO transmission of a Data field with BCC encoding on a 26-, 52-, 106-, or 242-tone RU for a single frequency segment if the number of spatial streams is less than or equal to 4. Figure
	27-17 applies to the Data field of an HE MU PPDU that is transmitted on an RU allocated to a single user, the Data field of an HE SU PPDU, and the Data field of an HE TB PPDU (whether or not it is spatially multiplexed with other users).
	IEEE P802.11ax/D6.0, November 2019, at 524-25.

'228 Patent Claim	Representative NXP Product(s)				
	Figure 27-16 (Transmitter block diagram for the HE-SIG-B field) shows the transmit process for the HE-SIG-B field of an HE MU PPDU using one frequency segment. This block diagram is for transmitting HE-SIG-B in one 20 MHz subchannel. Refer to 27.3.11.8.2 (HE-SIG-B content channels) for the methods of transmitting HE-SIG-B in 40 MHz, 80 MHz and 160 MHz. The DCM tone mapper, which is defined in 27.3.12.9 (Constellation mapping), is applied only if the HE-SIG-B DCM field in the HE-SIG-A field is 1.				
	Insert GI and Window Analog and RF Insert GI and Window Analog and RF Insert GI Window Analog and RF				
	U U </th				
	Figure 27-16—Transmitter block diagram for the HE-SIG-B field				
	IEEE P802.11ax/D6.0, November 2019, at 524.				
	27.3.4 HE PPDU formats				

'228 Patent Claim	Representative NXP Product(s)							
	The format of the HE SU PPDU is defined as in Figure 27-8 (HE SU PPDU format). This PPDU format is used for SU transmission and, in this format, the HE-SIG-A field is not repeated.							
	Variable durations per HE-LTF symbol 8 μs 8 μs 4 μs 8 μs 4 μs							
	L-STF L-LTF L-SIG RL-SIG HE-SIG-A HE-STF HE-LTF HE-LTF Data PE							
	Figure 27-8—HE SU PPDU format							
	The format of the HE MU PPDU is defined as in Figure 27-9 (HE MU PPDU format). This format is used for transmission to one or more users if the PPDU is not a response of a Trigger frame. In the HE MU PPDU, the HE-SIG-A field is not repeated. The HE-SIG-B field is present in this format.							
	4 μs per Variable durations per HE-LTF symbol 8 μs 8 μs 4 μs 8 μs symbol 4 μs							
	L-STF L-LTF L-SIG RL-SIG HE-SIG-A HE-SIG-B HE-STF HE-LTF HE-LTF Data PE							
	Figure 27-9—HE MU PPDU format							
	The format of the HE ER SU PPDU is defined as in Figure 27-10 (HE ER SU PPDU format). This format is used for SU transmission and, in this format, the HE-SIG-A field is twice as long as the HE-SIG-A field in other HE PPDU formats.							
	Variable durations per HE-LTF symbol							
	8 μs 8 μs 4 μs 16 μs 4 μs L-STF L-LTF L-SIG RL-SIG HE-SIG-A HE-STF HE-LTF HE-LTF Data PE							
	Figure 27-10—HE ER SU PPDU format							
	IEEE P802.11ax/D6.0, November 2019, at 519.							
11[b]. wherein the data packet comprises a bit to indicate to use dual carrier	The Accused '228 Products include a "data packet" that "comprises a bit to indicate to use dual carrier modulation (DCM), wherein the RU comprises a total number of data tones."							
modulation (DCM),	See, e.g.:							

'228 Patent Claim	Representative NXP Product(s)					
wherein the RU comprises	FEATURES	88W9064				
a total number of data tones;	Wi-Fi [®]	 IEEE® 802.11ax, 802.11ac Wave 2, 802.11a/b/g/n 20/40/80/160 (80+80) MHz channel bandwidths 2.4 Gbit/s peak data rate Implicit and explicit beamforming 				
	802.11ax	 Downlink OFDMA and MU-MIMO Uplink OFDMA and MU-MIMO 1024 QAM Spatial re-use Range extension DCM 				
	Flex MAC	Adaptable architecture for standards evolutionManagement of high number of traffic queuesAdvanced scheduling				
	Bluetooth®	 Support for Bluetooth 5 Direction finding Long range Co-existence arbitration 				
	Dedicated In-Service Monitoring	Concurrent spectrum scanningZero wait DFS				
	Precision Location	Distance: within 1 meterAngle: within 10 degrees				
	Host Interfaces	 MCi (2-Lane) PCIe[®] 3.0 (2-Lane) High-Speed UART (for Bluetooth only) 				
	https://www.nxp.com/de	ocs/en/fact-sheet/88W9064-FACT-SHEET.p	<u>df</u>			
	27.3.4 HE PPDU for	mats				

'228 Patent Claim	Representative NXP Product(s)					
	The format of the HE SU PPDU is defined as in Figure 27-8 (HE SU PPDU format). This PPDU format is used for SU transmission and, in this format, the HE-SIG-A field is not repeated.					
	Variable durations per HE-LTF symbol 8 μs 8 μs 4 μs 8 μs 4 μs					
	L-STF L-LTF L-SIG RL-SIG HE-SIG-A HE-STF HE-LTF HE-LTF Data PE					
	Figure 27-8—HE SU PPDU format					
	The format of the HE MU PPDU is defined as in Figure 27-9 (HE MU PPDU format). This format is used for transmission to one or more users if the PPDU is not a response of a Trigger frame. In the HE MU PPDU, the HE-SIG-A field is not repeated. The HE-SIG-B field is present in this format.					
	4 us per Variable durations per HE-LTF symbol					
	L-STF L-LTF L-SIG RL-SIG HE-SIG-A HE-SIG-B HE-STF HE-LTF HE-LTF Data PE					
	Figure 27-9—HE MU PPDU format					
	The format of the HE ER SU PPDU is defined as in Figure 27-10 (HE ER SU PPDU format). This format is used for SU transmission and, in this format, the HE-SIG-A field is twice as long as the HE-SIG-A field in other HE PPDU formats.					
	Variable durations per HE-LTF symbol					
	L-STF L-LTF L-SIG RL-SIG HE-SIG-A HE-STF HE-LTF HE-LTF Data PE					
	Figure 27-10—HE ER SU PPDU format					
	IEEE P802.11ax/D6.0, November 2019, at 519.					
	27.3.11.7 HE-SIG-A					

Two Parts of HE-SIG-A	of Bit	Field	Number of bits	Description				
HE-SIG-A	B0	UL/DL	1	Indicates whether the PPDU is sent UL or DL. Set to 1 if the PPDU is addressed to an AP. Set to 0 otherwise. See the TXVECTOR parameter UPLINK_FLAG.				
111-510-74	1			NOTE—The TDLS peer can identify the TDLS frame by To DS and From DS fields in the MAC header of the frame.				
	B1-B3	HE-SIG-B- MCS	3	Indicates the HE-MCS of the HE-SIG-B field: Set to 0 for HE-SIG-B-MCS 0 Set to 1 for HE-SIG-B-MCS 1 Set to 2 for HE-SIG-B-MCS 2 Set to 3 for HE-SIG-B-MCS 3 Set to 4 for HE-SIG-B-MCS 4 Set to 5 for HE-SIG-B-MCS 5 Values 6 and 7 are reserved				
	B4	HE-SIG-B DCM	1	Set to 1 indicates that the HE-SIG-B is modulated with DCM for the HE-MCS. Set to 0 indicates that the HE-SIG-B is not modulated with DCM for the HE-MCS.				
				NOTE—DCM is only applicable to HE-SIG-B-MCS 0, 1, 3, and 4.				
IEEE P802	11ax/D6.0,	November 201	9, at 555-56					

Representative NXP Product(s)					
Table 27-28—User field format for a non-MU-MIMO allocation					
Bit	Subfield	Number of bits	Description		
B15-B18	HE-MCS	4	If the STA-ID subfield is not 2046, indicates the modu- lation and coding scheme: Set to <i>n</i> for HE-MCS <i>n</i> , where $n = 0, 1, 2,, 11$ Values 12-15 are reserved Set to an arbitrary value if the STA-ID subfield is 2046.		
B19	DCM	1	If the STA-ID subfield is not 2046, indicates whether or not DCM is used: Set to 1 to indicate that the payload of the corre- sponding user of the HE MU PPDU is modulated with DCM for the HE-MCS. Set to 0 to indicate that the payload of the corre- sponding user of the PPDU is not modulated with DCM for the HE-MCS.		

'228 Patent Claim	Representative NXP Product(s)						
	Table 27-24—Common field						
	Subfield	Number of subfields	Number of bits per subfield	De	escription		
	RU Allocation	N	8	NRU Allocation subfields tent channel, where: N=1 if the Bandwidth f 1 (indicating a 20 MHz of N=2 if the Bandwidth f or 5 (indicating an 80 M N=4 if the Bandwidth f or 7 (indicates a 160 MHz Each RU Allocation subfiel corresponding to a 20 MHz RU assignment, including t placement in the frequency modulated fields of the HE domain, also indicates info number of users allocated t indices of the RU(s) meet t associated with each RU A SIG-B content channel and	are present in an HE-SIG-B con- ñeld in the HE-SIG-A field is 0 or or 40 MHz HE MU PPDU) ñeld in the HE-SIG-A field is 2, 4, Hz HE MU PPDU) ñeld in the HE-SIG-A field is 3, 6, Hz or 80+80 MHz HE MU PPDU) d in an HE-SIG-B content channel t frequency segment indicates the the size of the RU(s) and their domain, to be used in the HE MU PPDU in the frequency rmation needed to compute the o each RU, where the subcarrier he conditions in Table 27-25 (RUs llocation subfield for each HE- PPDU bandwidth).		
	Table 27-25-R	.ax/D6.0, N Us associate	lovember d with each channel a	2019, at 573. n RU Allocation subfiel and PPDU bandwidth	d for each HE-SIG-B conten	t	
	PPDU bandwidth	RU Allocation s	ubfield and C (if pres	Center 26-tone RU subfield sent)	RUs in the subcarrier range, or overlapping with the subcarrier range if the RU is larger than a 242-tone RU		
	20 MHz	The RU Alloc content channe	ation subfiel l	d in a single HE-SIG-B	[-122:122]		
	IEEE P802.11	ax/D6.0, N	lovember	2019, at 575.			

'228 Patent Claim	Representative NXP Product(s)
	27.3.7 HE modulation and coding schemes (HE-MCSs)
	DCM is an optional modulation scheme used for the HE-SIG-B field and the Data field in an HE PPDU. The use of DCM for the HE-SIG-B field in an HE MU PPDU is indicated in the HE-SIG-A field. For the HE-SIG-B field, DCM is applicable to only the HE-SIG-B-MCSs 0, 1, 3 and 4. The use of DCM on the Data field of an HE SU PPDU and HE ER SU PPDU is indicated in the HE-SIG-A field. The use of DCM in the Data field of an HE MU PPDU is indicated in the HE-SIG-B field. For the Data field, DCM is applicable to only the HE-SIG-B field. For the Data field, DCM is applicable to only the HE-SIG-B field. For the Data field, DCM is applicable to only the HE-SIG-B field. For the Data field, DCM is applicable to only the HE-MCSs 0, 1, 3 and 4. IEEE P802.11ax/D6.0, November 2019, at 537-38.
11[c]. an interleaver operable to interleaves a set of the encoded bits to produce a set of interleaved bits by using interleaving parameters, wherein in response to the bit indicating to use the DCM, the interleaver is operable to determine the interleaving parameters based on half of the total number of data tones of the RU, wherein the set of the encoded bits is interleaved with respect to half of the total number of data tones of the RU in response to the bit indicating to use the	The Accused '228 Products include "an interleaver operable to interleaves a set of the encoded bits to produce a set of interleaved bits by using interleaving parameters, wherein in response to the bit indicating to use the DCM, the interleaver is operable to determine the interleaving parameters based on half of the total number of data tones of the RU, wherein the set of the encoded bits is interleaved with respect to half of the total number of data tones of the RU in response to the bit indicating to use the DCM." See, e.g.: 27.3.5 Transmitter block diagram

28 Patent Claim	Representative NXP Product(s) Table 27-35—BCC interleaver parameters						
DC	M Parameter		RU size (tones)				
		26	52	106	242	56	
	N _{COL}	8	16	17	26	13	
Not u	sed N _{ROW}	$3 \times N_{BPSCS}$	$3 \times N_{BPSCS}$	$6 \times N_{BPSCS}$	$9 \times N_{BPSCS}$	$4 \times N_{BPSCS}$	
	N _{ROT}	2	11	29	58	-	
	N _{COL}	4	8	17	13	13	
Use	d N _{ROW}	$3 \times N_{BPSCS}$	$3 \times N_{BPSCS}$	$3 \times N_{BPSCS}$	$9 \times N_{BPSCS}$	$2 \times N_{BPSCS}$	
	N _{ROT}	2	2	11	29	-	

'228 Patent Claim	Representative NXP Product(s)
11[d]. a modulator operable to modulate the set of interleaved bits to generate a modulated output, wherein in response to the bit indicating to use the DCM, the modulator is operable to modulates the set of interleaved bits onto a first half of frequency subcarriers of the RU using a first modulation scheme; and is operable to modulate a copy of the set of interleaved bits onto a second half of frequency subcarriers of the RU using a second modulation scheme; and	On information and belief, the Accused '228 Products include "a modulator operable to modulate the set of interleaved bits to generate a modulated output, wherein in response to the bit indicating to use the DCM, the modulator is operable to modulates the set of interleaved bits onto a first half of frequency subcarriers of the RU using a first modulation scheme; and is operable to modulate a copy of the set of interleaved bits onto a second half of frequency subcarriers of the RU using a second modulation scheme."
	27.3.12.9 Constellation mapping
	If DCM is employed, bit sequences are mapped to a pair of symbols $(d_k, d_{q(k)})$ where k is in the range of $0 \le k \le N_{SD} - 1$ and $q(k)$ is in the range of $N_{SD} \le q(k) \le 2N_{SD} - 1$ in order to exploit frequency diversity for a 996-tone or smaller RU, and $0 \le k \le N_{SD}/2 - 1$ and $q(k)$ is in the range of $N_{SD}/2 \le q(k) \le N_{SD} - 1$ for a 2×996-tone RU. To maximize the frequency diversity, the indices of a pair of DCM subcarriers $(k, q(k))$ is $q(k) = k + N_{SD}$ for a 996-tone or smaller RU and $q(k) = k + N_{SD}/2$ for a 2×996-tone RU. The N_{SD} here refers to the N_{SD} with DCM = 1, which is half the value of N_{SD} with DCM = 0.
	For BPSK modulation with DCM, the input stream is broken into groups of N_{CBPS} or $N_{CBPS,u}$ bits $(B_0, B_1,, B_{N_{CBPS,u}-1})$. Each bit B_k is BPSK modulated to a sample d_k . This generates the samples for the lower half of the data subcarriers. For the upper half of the subcarriers, the samples are generated as $d_{k+N_{SD}}^* = d_k^* \times e^{j(k+N_{SD})\pi}$, $k = 0, 1,, N_{SD} - 1$. The N_{SD} here refers to the N_{SD} with DCM = 1, which is half the value of N_{SD} with DCM = 0. IEEE P802.11ax/D6.0, November 2019, at 620-23.
11[e]. a transmitter operable to transmit the modulated output that	The Accused '228 Products include "a transmitter operable to transmit the modulated output that represents the data packet for receipt by the destination station."

'228 Patent Claim	Representative NXP Product(s)				
represents the data packet for receipt by the	See, e.g.: 27.3 HE PHY				
destination station.	27.3.1 Introduction				
	This subclause provides the procedure by which PSDUs are converted to and from transmissions on the wireless medium.				
	During transmission, a PSDU (in the SU case) or one or more PSDUs (in the MU case) are processed (i.e., scrambled and coded) and appended to the PHY preamble to create the PPDU. At the receiver, the PHY pre- amble is processed to aid in the detection, demodulation, and delivery of the PSDU.				
	IEEE P802.11ax/D6.0, November 2019, at 504.				
	Non-HE portion Pre-HE-modulated fields HE portion HE modulated fields				
	L-STF L-LTF L-SIG RL-SIG HE-SIG-A HE-SIG-B HE-STF HE-LTF HE-LTF Data t = 0 t _{L-LTF} t _{L-SIG} t _{RL-SIG} t _{RL-SIG} t _{RL-SIG} t _{RL-SIG-B} t				
	Figure 27-23—Timing boundaries for HE PPDU fields if midamble is not present				
	IEEE P802.11ax/D6.0, November 2019, at 544.				